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Abstract 

In this paper we demonstrate that the distributional laws that relate the number of 
customers in the system (queue), L(Q) and the time a customer spends in the system 
(queue), S(W) under the first-in-first-out (FIFO) discipline are special cases of the 
H = AG law and lead to a complete solution for the distributions of L, Q, S, W for 
queueing systems which satisfy distributional laws for both L and Q (overtake free 
systems). Moreover, in such systems the derivation of the distributions of L, Q, S, W 
can be done in a unified way. Consequences of the distributional laws include a 
generalization of PASTA to queueing systems with arbitrary renewal arrivals under 
heavy traffic conditions, a generalization of the Pollaczek-Khinchine formula to the 
GI/G/1 queue, an extension of the Fuhrmann and Cooper decomposition for queues 
with generalized vacations under mixed generalized Erlang renewal arrivals, ap- 
proximate results for the distributions of L, S in a GI/G/c queue, and exact results 
for the distributions of L, Q, S, W in priority queues with mixed generalized Erlang 
renewal arrivals. 
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1. Introduction 

What are the laws of electrodynamics? In order to address this question we should 
first define the fundamental quantities of electrodynamics, the electric field E and 
the magnetic field B. The fundamental laws of electrodynamics are the Maxwell 

equations. The goal of electrodynamics is then to find E and B in various 

applications. The Maxwell equations form a complete set of laws in the sense that 

just starting from them and using the calculus of partial differential equations one is 
able to compute E and B either analytically or numerically in a variety of 

applications. What is important here is that the physics of a problem is summarized 
in the Maxwell equations, which then lead to a complete solution for E and B in a 

unified way. 
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Let us then ask the key question which motivated the present paper. What are the 
laws of queueing theory? The fundamental quantities in queueing theory are the 
stationary queue and system length (Q, L) and the waiting and system time (W, S) 
under the first-in-first-out (FIFO) discipline. Of course there are several other 
random variables of interest (often particular to the application studied), but these 
are the most widely used. The goal of queueing theory is then to find the 
distributions of Q, L, W, S in various applications. In its almost one hundred year 
history queueing theory has addressed a great variety of problems using a variety of 
techniques, which solve some problems but fail on others. What is interesting is the 
lack of a unified way to solve a particular application. Queueing theory research 
does not start from a set of well established laws and then proceed to the solution 
using some well established mathematical techniques. It rather uses the particular 
characteristics of the application to achieve its solution. 

Coming to our original question regarding the laws of queueing theory, one would 
like to have a set of laws which, similar to Maxwell's equations in electrodynamics, 
lead to a complete solution of the queueing application. A first candidate might be 
Little's law [15]. However, as Little's law does not contain second moment 
information, it cannot lead to a complete solution. The next candidate might be the 
generalization of Little's law: H = AG, as pointed out in Whitt [25] and Miyazawa 
[18], who also points out that the rate conservation law, H = AG and the Palm 
transformation for stationary marked point processes are essentially equivalent. 
Indeed, Heyman and Sobel [10] (see also Baccelli and Bremaud [1]) illustrate that 
the Pollaczek-Khinchine formula for the M/G/1 queue follows easily from H = AG. 

Our goal in this paper is to provide further evidence that H = AG is the right set 
of laws. In particular, we demonstrate that by applying H = AG to systems that do 
not allow overtaking, we derive the distributional laws first obtained by Haji and 
Newell [9]. We then demonstrate that the distributional laws lead to a complete 
solution for the stationary distributions of L, Q, S, W in overtake free systems. 
Moreover, in such systems the derivation of the distributions of L, Q, S, W can be 
done in a unified way. In this way not only do we obtain new simple derivations of 
known results providing new insights into old results, but we obtain several new 
results as well. We propose two methods of analysis: an asymptotic (in heavy traffic) 
method which applies to overtake free systems with arbitrary renewal arrivals and 
an exact method which applies to overtake free systems with mixed generalized 
Erlang arrivals. 

For the case of Poisson arrivals Keilson and Servi [12], [13] found that the 
distributional laws have a very convenient form that can lead to complete solutions 
for some overtake free systems. For the case of mixed generalized Erlang renewal 
arrivals Bertsimas and Nakazato [2] gave another proof of the distributional laws 
that led to a very convenient form of the law as well. They also proposed a 
framework to find E[L], E[Q], E[S], E[W] in heavy traffic for overtake free 
queueing systems based on the distributional laws. In this paper we develop a 
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methodology to find the distributions of L, Q, S, W for overtake free systems with 
arbitrary renewal arrivals, thus generalizing all earlier work. Our apporach is to use 
asymptotic analysis (which is exact in heavy traffic) for the case of arbitrary renewal 
processes and exact analysis for the case of mixed generalized Erlang renewal 
arrivals. 

The paper is structured as follows. In Section 2 we review the distributional laws 
and present a new derivation from H = AG providing further evidence of the power 
of the H = AG law. In Section 3 we present an asymptotic method of analysis for 
overtake free queueing systems based on the asymptotic properties of the 
distributional laws and a generalization of the well known result of Poisson arrivals 
see time averages (PASTA) to queueing systems with arbitrary renewal arrivals 
under heavy traffic conditions. Furthermore, we illustrate the efficiency of the 
method by deriving the distributions of L, Q, S, W in GI/G/1, GI/D/s queues and 
obtaining approximate results for the distributions of L, S in a GI/G/oc queue. Our 
derivation unifies the heavy traffic results and leads to a generalization of the 
Pollaczek-Khinchine formula to the GI/G/1 queue. In Section 4 we present an 
exact method of analysis for overtake free systems with mixed generalized Erlang 
(MGE) renewal arrivals and we implement it in the case of the MGEM/G/1 queue. 
This section demonstrates that there is a direct closed form expression for the 
number of customers in a MGEM/G/1 system, while our approach reproduces the 
known results for the waiting time involving roots of a certain nonlinear equation in 
a direct way without the need for Hilbert factorization. In Section 5, as another 
application of the exact method of analysis for overtake free systems, we extend the 
decomposition results for queues with generalized vacations considered in Fuhr- 
mann and Cooper [6] for the M/G/1 queue to MGE arrivals. In Section 6 we 
propose an algorithm to find the distributions of L, Q, S, W in priority queues with 
mixed generalized Erlang renewal arrivals, thus we generalize earlier results for 
Poisson arrivals. The derivations in this section are considerably more complicated 
compared with the results in previous sections. Finally, in Section 7 we include some 
concluding remarks and indicate directions for future research. 

2. The distributional law 

In this section we first review the distributional law for arbitrary arrivals and then 
consider the case in which the arrival process is a mixed generalized Erlang renewal 
process. 

2.1. A review of the distributional law. Consider a general queueing system, with 
a renewal arrival process. As will become apparent later the 'system' may either 
correspond to a single queue, a queue plus a service facility as well as several 
queues in tandem. Let Tj be the arrival time of customer Cj, with To=0 and 
To < T1 < * * < o. Assume that the system satisfies the following set of assumptions. 
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Assumptions A (Distributional law assumptions). 
A.1 All arriving customers enter the system one at a time, remain in the system 
until served (there is no blocking, balking or reneging) and leave also one at a time. 
A.2 The customers leave the system in the order of arrival (FIFO). 
A.3 New arriving customers do not affect the time in the system for previous 
customers. 

Let us define Sj to be the total time customer Cj spends in the system and L(t) to 
be the number of customers in the system at time t. Let Na(t) be the number of 
customers that arrived up to time t for the ordinary process (where the time of the 
first interarrival time has the same distribution as the stationary interarrival time). 
Let N*(t) be the number of arrivals up to time t for the equilibrium process (where 
the time of the first interarrival time is distributed as the forward recurrence time of 
the arrival process). Assuming that the system reaches, eventually, steady-state let 
L, L-, L+ be the steady-state number of customers in the system at a random 
observation time, just before an arrival or just after a departure, respectively. 
Similarly, let S be the steady-state system time. The distributional law can be stated 
as follows: 

Theorem 1. (Haji and Newell [9]) For a single class system that satisfies 
Assumptions A, the stationary number of customers, L, and the stationary system 
time, S, are related in distribution by 

(1) L N*(S), 
while 

(2) GL(z) = K(z, t) dFs(t), 

where 

K(z, t) A znP{N*(t) = n}. 
n=0 

From H = AG to distributional laws. To derive the steady state distributional laws 
from the relation H= AG, we first need to define a sequence of customer 

dependent random variables, gj(.), a stochastic process h(t; .) and the corresponding 
admissible function, fj(t; .) (see [10]), such that for an arbitrary realization of the 

queueing system o): 

(3) h(t; o) 
A 

j(t; o) and gj(t) fj(t; to) dt. 
j=1 O 

More specifically, using lower case letters to define realizations of the correspond- 
ing upper case random variables, let us define the following indicator function: 

( 1 iftj < t t + sj and na(t - tj) =n - 1 

(t)0 otherwise. 

In words, fj(t; o) = 1 if under realization o customer Cj is the nth most recently 
arrived customer to the system at time t and he is still in the system at t. Using 
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indicator functions we rewrite fj(t; w) as follows: 

fj(t; c)) = l{tj <t t + sj, na(t - tj) = n - 1}. 

From (3) we obtain 

h(t; c) = l{l(t; co) - n} and gj()) = l{tj < t - tj + sj, na(t - tj)= n - 1} dt, 

hence, under realization c, h(t; c) is the indicator of the event that there are at least 
n customers in the system at time t and gj(co) represents the time period during 
which Cj as well as the n -1 customers that arrived after him are still in the system 
(notice the use of Assumptions A.1 and A.2). 

Furthermore, using Assumption A.3 we can rewrite the above relation as follows: 

h(t; ) = l{(t; o) i n} and gj(o) = l{-< sj}l{na(r) = n -1} dr, 

where r -t - tj. Using the sample path version of H = AG (see [25], Theorem 6.1) 
we obtain 

lim (l/t) f l{l(t; ) n}dt = A lim (1/k) E l{rsj}l{na(r) = n - 1}dr. 
t.-. - c k--- j J=O 

Moreover, if we define by H(t), Gj the random variables corresponding to the 
realizations h(t; w) and gj(o)) we have that 

H(t) l{L(t) n} and Gj - l{r _ S}l{Na(T) n - 1} dr. 
Jo 

Hence, the steady state limits should be defined as follows: 

H - 1{L _ n} and GA f {r < S}l{Na() = n - 1} dr. 

Using the steady state version of H = AG (see [25], p. 242 for the set of underlying 
assumptions) we conclude that 

E[1{L - n}] = AE[ 1{r < S}l{Na(r) = n - 1} dr], 

or equivalently, 

(4) P{L - n} = AJ P{r _ S}P{Na(r) = n - 1} dr, 

where we interchanged the expectation and the integral using Fubini's Theorem. 
Combining (4) with the facts that P{L =n} = P{L n} - P{L - n + 1} and 

P{L -0} = 1 we obtain a formula for P{L = n}. Taking generating functions, we 

obtain, after some straightforward algebraic manipulations, that GL(z)= 1 + 
A(z - 1) fo Ko(z, t)P{S - t} dt, where Ko(z, t) Ea =o P0Z{N,(t) = n}. Integrating the 
above relation by parts and using the fact (see [4]) that K(z, t)= 1 + 
A(z - 1) fo Ko(z, u) du we obtain (2). 
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Remarks. 
1. Relation (1) holds even if we relax the assumption that the arrival process is 

renewal and we consider the broader family of stationary arrival processes (see 
[9]). 

2. Similar relations hold for the number of customers in the system just before an 
arrival or just after a departure. Namely, 

L- L+ Na(S) 

(5) GL-(Z) = GL+() = Ko(, t) dFs(t). 

The Laplace transform of the renewal generating functions K(z, t) and Ko(z, t) 
are given by 

Ko 1 (1 -z)(1-a(s)) 

(6) K*(z,s)- e-s'K(z,t)dt'-- 2(1 

Ka*(, s) e-'Ko(z, t) dt= s(- za(s))' 

3. For the case of Poisson arrivals K(z, t) = Ko(z, t)=e- At( -) and thus the 
distributional laws become a relation between transforms (Keilson and Servi 
[12]): 

(7) GL(z) = 4s(A(1 - )). 

2.2. A vector distributional law. A vector generalization of (7) has been proposed 
in Bertsimas and Nakazato [2] under the assumption that the arrival process is a 
mixed generalized Erlang (MGE) process, which can approximate any renewal 
arrival process arbitrarily closely. While the class MGE is a special case of the phase 
type distribution PH (see [19]) it is the simplest class of distributions that is dense in 
the space of all distributions. The stage representation of the MGE distribution is 
presented in Figure 1, i.e. we conceive of the arrival process as an arrival timing 
channel (ATC) consisting of M consecutive exponential stages with rates 
A1, A2, ',AM and with probabilities p,,p2, ' ',PM (PM = 1) of entering the 

system after the completion of the 1st, 2nd, . . , Mth stage. 
Let ak(t) be the pdf of the remaining interarrival time if the customer in the ATC 

is in stage k = 1, * .., M. Therefore, a(t) = al(t) is the pdf of the interarrival time. 
For notational convenience we will drop the subscript for k = 1. Also 1/A denotes 
the mean interarrival time. 

Let ak(s) be the Laplace transform of ak(t). Let a{(t) be the probability to move 
from stage i _j of the ATC to stage j during the interval [0, t) without having any 
new arrival. We will also use the notation: al(t)= (al(t), . , aM(t)), k(t) = 

(0, * , a(), * * , ak(t)). (k(S) denotes the Laplace transforms of ak(t). e = 

(0, ,1,.,0), 1=(1,.,1, ,1). 
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A1 A2 -- '- AM 

Pi P2 PM 

V t 

Figure 1. The Coxian class of distributions. 

By introducing the following upper semidiagonal matrix Ao and the dyadic matrix 
A1 

-A, -(1 - P)A1 0 * 0 

0 A2 -(1 - 2)A2 ' 

Ao = *. 

AM-1 -(1 -PM-1)AM-1 

0 ... 0 AM 

--A1 0 0 "' -piA ** * O 

A,= . 

L-PMAM 0 *" 0_ 

we can express compactly the transforms defined above as follows: 

k(s) = ek(Is + Ao)-', 

r-1 

M M r (1 - pi)Ai 
ak(S) = -k(Is + A0)-'A1 = PrArc(s) = PAr 

r=k r=k n (s + Ai) 
i=k 

a(s) = -trace ((Is + Ao)-'A), 

thus the interarrival pdf becomes a(t)= -trace(e-A?tAl). 
Note that a mixed generalized Erlang renewal process is fully characterized by the 

matrices Ao, A1. In queueing systems with mixed generalized Erlang renewal arrival 

processes we introduce: 
L+ = the number of customers in the system immediately after a departure epoch. 
Lt = the number of customers in the system just before a transition epoch of the 
arrival process. A transition includes both arrivals in the system and shifts to the 
next exponential stage of the ATC. We emphasize that Lt is not the number of 
customers before an arrival epoch. The motivation for considering Lt is that using 
uniformization the epochs of transition are Poisson distributed and thus we can 

apply PASTA. 
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R+ = the ATC stage immediately after a departure epoch. 
Rt = the ATC stage just before a transition epoch of the arrival process. 

Finally we use the following row vectors: Pn = [P{L+ = n n R+ = i}], 
PL(Z) = X=o TPn, Pn [P{L nnRt = i}]=m, PL(z) n= o zPn and Pn ....=S}]i=l, -PZ_(z)= n=oA'Zn, and E=Zn 

= 

[P{L = n n R = i}]m, PL(z) = = nPn,. The vector distributional law is de- 
scribed in the following theorem. 

Theorem 2. (Bertsimas and Nakazato [2]) Under Assumptions A and for mixed 

generalized Erlang interarrival times characterized by the matrices Ao, A1, 

PL(Z) = PL (), 
(8) 

PL()(Ao + zA1) = A( -)P(Z), 

PL(z) = e'bs(Ao + zA1), 
(9) 

PL(Z) = A(1 - z)egl4s(Ao + zA,)(Ao + zA1)-, 

where for any matrix D we symbolically define 'Ds(D) fo e-D' dFs(t). The kernel 

K(z, t) in (2) is given by 

K(z, t) = A(1 - z)ele-(A?+zA')'(Ao + zA1)-1l', 

which leads to 

GL(z) = A(1 - z)efIP?s(Ao + zAD)(Ao + zA,)- 1'. 

Once again in the case of Poisson arrivals the vector forms reduce to scalars and 
we obtain (7). 

We define as overtake free systems those systems that satisfy Assumptions A if we 
define the 'system' to be either just the queue or the queue plus the service facility. 
Examples of such systems include (a) GI/G/1 under FIFO, (b) GI/D/s under 
FIFO, (c) systems with vacations. 

For such systems we can use Theorems 1 and 2 for both the queue and the queue 
plus the service facility. More specifically, if we keep the notation of the previous 
sections when the 'system' is the queue plus the service facility and we also denote 

by Q and Q+ the steady-state number of customers in the queue at an observation 

epoch and just after a departure, respectively, and by W the steady-state waiting 
time (in the queue), then we have that the relations of both Theorem 1 and 
Theorem 2 also hold if we substitute Q for L and W for S. For example, similarly to 

(2), we can obtain 

(10) GQ(Z) E[z0] f K(z t) dFw(t). 

3. An asymptotic method of analyis for overtake free systems 

In this section we consider overtake free systems with general arrival processes 
that satisfy Assumptions A and have the property that whenever p-- 1, 
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L, Q, S, W - oo, and we propose a unified asymptotic method for the derivation 
of the distributions of L, Q, S, W, as well as L+ and Q+. This section is structured 
as follows. In Section 3.1 we derive the asymptotic form of the distributional 
law while in Section 3.2 we give an asymptotic generalization of the PASTA 
property. In Section 3.3 we present the asymptotic method of analysis for overtake 
free systems. Finally, in Section 3.4, we implement this method in specific examples, 
i.e. GI/G/1, GIlD/s and GI/G/oo queues, to obtain new asymptotic results. 

3.1. The asymptotic distributional law. The important advantage of the Poisson 
arrival process is that the kernel K(z, t) in Theorem 2 has the very tractable form 
K(z, t) = e-A(-z)t. As mentioned above, the distributional law then becomes a 
relation among transforms, i.e. GL(z) = 0s(A(l - z)). For mixed generalized Erlang 
arrivals K(z, t) is given explicitly in Theorem 2. For arbitrary renewal arrivals, 
however, K(z, t) is not known in closed form. In order to exploit the distributional 
laws we try to understand in this section the asymptotic behavior of K(z, t). For 
systems in heavy traffic (p -> 1) both L, Q, S, W tend to infinity (we need to exclude 
systems with deterministic arrivals and deterministic service, i.e. D/D/1). We will 
use the notation that under heavy traffic conditions h(x)- r(x) means that 
limp_l h(x)lr(x) = 1. 

As a result of the integral form of the distributional laws, for systems in heavy 
traffic we are interested in the behavior of K(z, t), Ko(z, t) as t-> o and z-, 1. 

Following the asymptotic approach introduced in Smith [23] (see also Cox [4], ch. 
4-6) we obtain: 

Theorem 3. Asymptotically, as t->oc and z -> 1 the kernels in Theorem 1 behave 
as follows: 

K(z, t) e-'f(z), and Ko(z, t) - [1 - ?(1 - z)(c2 - 1) + 0((1 - z)2)]e-tf(z) 

where 

f(z)- A(1 - z) = A(1 - z)2(c2 - 1), 

and C2 is the square coefficient of variation of the interarrival process. 

Proof. From (6) by writing K*(z, s) = N(z, s)/s2D(s, z) and expanding N(z, s), 
D(s, z) as a Taylor series up to second-order terms in s (note that t- oo in the time 
domain is equivalent to s -- 0 in the transform domain) we have 

K (2Z/A) - A(1 - z)E[A2] + [zE[A2] - ?A(1 
- 

z)E[A3]]s + O(s2) K*(z, s) = 
)(s - s)(S -s2)zE[A2] 

where we used the facts that d(O) = 1/A, a(0) = E[A2], .. , E[Ak] being the kth 
moment of the interarrival time, and s1 and s2 are the roots of 

zE[A2]s2 + 2(z/A)s + 2z - 2 = 0. 
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If we denote by s, the smallest of the two roots, we can easily obtain that: 

5s=- E[A2] -A 2z(z - 1)E[A2]- and 2 AE[A2]- S 
S1 

* -- [-zE[ ]nd sA2 = AE[A2] 

Using a partial fraction expansion we invert in the time domain to obtain that as 
s - 0, 

K*(z, s) - g(z)/(s - s,) + u(z)I(s - s2), 

with g(z) = lim,,,, (s - sl)K*(z, s) and u(z) = lims,,2 (s - s2)K*(z, s). Expanding, 
now around z = 1 we obtain after some tedious but straightforward manipulations 
that 

, --A(1 - z) + 1A(1 - Z)2(C2- 1) + 0((1 - z)3) 

and 

g(z) 1 + 0((1 - z)2), u(z) ((1 - )), 

hence inverting back in the time domain 

K(z, t) ~ (1 + 0((1 - z)2))eS" = (1 + 0((1 - z)2)) 

x exp [-t(A(1 - z) - A(1 - z)22- 1))]. 

In a similar way, by expanding K*(z, s) as a Taylor series in terms of s and inverting 
in the time domain keeping only the most important term asymptotically, we obtain 
that 

Ko(z, t) [1- + 1 - 1 (1 - Z)2)] exp [-t(A(1- z)- A(1 - z)2(c - 1))]. 

Combining Theorems 1 and 2 we obtain the following asymptotic form of 
distributional laws for overtake-free systems. 

Theorem 4. In an overtake free queueing system that satisfies Assumptions A and 
assuming that as p--1, L, Q, S, W-- oo the following asymptotic relations hold as 
p l: 

(11) GL(Z) -S(f(z)), 

(12) GQ(z)- w(f (z)), 

f(z) 
(13) GL+(Z -f) O A ( f (z)), 

A(1-z) 

f(z) 
(14) GQ+(z) - Z) w(f (z)), 

A( - z) 

with f(z) = A(1 - z) + A(1 - z)22 -1). 

Proof. Substituting in (10), (2) and (5) the asymptotic form of K(z, t) and Ko(z, t) 
from the previous theorem we obtain (11), (12) and (13), (14), respectively. 
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Although only valid asymptotically, (11), (12) and (13), (14) are very useful since 
they are relations among transforms, which we will further exploit in this section. 
Also, the previous expressions are exact for the Poisson case (c2 = 1). In order to 
develop some further insight into the asymptotic expressions of Theorem 4 we 
consider the case of E2 arrivals, i.e. a(s) = (2A/(2A + s))2. Then, 

K(z, t) 2(1 - )t] - exp [-2A(1 +- )t] (1 -2 

and 

Ko(z, t) = 2Vz exp [-2A(1 - ~z)t]- ( 
V exp [-2A(1 + )t]. 

As z - 1 only the first of the two exponentials contributes to K(z, t), Ko(z, t). 
Expressions (11) and (13) are the Taylor series expansions of the first exponential in 
terms of 1 - z. 

3.2. An asymptotic generalization of PASTA. Theorem 4 leads to an interesting 
generalization of PASTA for systems in heavy traffic. Consider a queueing system 
that satisfies Assumptions A. Since in such systems the number of customers in the 
system always changes by one (for example a GI/G/s queue), L = L- in 
distribution. In the case of Poisson arrivals, PASTA implies that L- = L in 
distribution. For general arrival processes, though, the distributions of L- and L are 
different. In heavy traffic (p -- 1); however, where Theorem 4 is applicable, we have 

(15) GL -() = GL (z) - GL(z)[ - ( - )( 1)]. 

In particular the first moments are related by 

E[L-] - E[L] + 2-1), 
which means that in heavy traffic, where both E[L-], E[L] are very large, their 
difference asymptotically depends only on the coefficient of variation of the arrival 
process. By similar arguments a relation similar to (15) holds for the number of 
customers in the queue. We remark that we need that L-, L (or Q-, Q) go to 
infinity as p - 1. For example, in a D/D/1 queue, even if p - 1, (15) does not hold, 
since L-, L (and Q-, Q) remain bounded and therefore the assumptions of 
Theorem 3 are not valid. 

Relation (15) is an asymptotic formula, which provides insight mainly due to its 
simplicity. However, there exist in the literature other exact generalizations of 
PASTA (see for example [17]) that apply to a more general class of systems; they 
tend however to be complicated and, as a result, not always tractable. 

3.3. An asymptotic method of analysis. Theorem 4 as well as (15) provide us with 
the necessary analytical tools to form a unified method that solves, asymptotically, 
overtake free systems. 

Let L, Q be the number of customers in the system and queue respectively, and S 
and W be the time spent in the system and queue. Let the random variable X 

598 



A unified method to analyze overtake free queueing systems 

denote the service time and let also L+(Q+) be the number of customers in the 

system (or in the queue) just after a departure. We can describe the proposed 
method in an algorithmic way as follows. 

Asymptotic method of analysis 
1. Relate the transforms of L and S, using the asymptotic form of the distributional 

law (11). 
2. Relate the transforms of Q and W, using the asymptotic form of the distribu- 

tional law (12). 
3. Relate the transforms of S and W using the fact that S = W + X. 
4. Relate the transforms of L and Q using the characteristics of the system (see 

Section 3.4 for further details). 
5. Solve the 4x4 system of equations from the previous 4 steps to find the 

transforms of L, Q, S and W. 
6. Using the asymptotic generalization of PASTA, (15), find the transforms of L+ 

and Q+ from the transforms of L and Q. 

3.4. Application of the asymptotic method. 
The GI/G/1 and GI/D/s queues. As a first application we consider a GI/G/1 

queue with a FIFO service discipline. Let 1/A, E[X], c2,c2 be the means and the 

square coefficients of variation for the interarrival and service time distributions. Let 

cx(s) be the Laplace transforms of the service time distribution. 

Theorem 5. In a GI/G/1 queue under FIFO as p-> 1 the Laplace transform of the 

waiting time distribution and the z-transform of the number of customers in the queue 
are given by 

(16) ^w (s 
l - G(-f -,())(1-P) 

(16) hw(S)'" 4(s) -f-l(s) 

and 

(1- z)(1 -p) 
(17) GQ(z)- - 

O (f(z))- z 

where f(z)= A(1- - z) - A(1 - Z)2(C2- 1). 

Proof. The distributional law holds for both L and Q. Performing the first two 

steps of the asymptotic method we obtain from (11) and (12), as p-- 1: 

GL(Z) k~ S(f(z)), GQ(Z) - w(f(z)). 

Performing the third step, since S = W + X and W, X are independent we obtain 

0s(f(z)) = 4w(f(z))dx(f(Z)). 

Finally, performing the fourth step, we obtain that the relation of the generating 
functions of L, Q is 

GL(Z) = (1 - )(1 - ) + GQ(). 
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The previous equations form a system of four equations with four unknowns. By 
setting s =f(z) and thus z =f-~(s) and solving the system of equations we obtain 

(16) and (17), as well as the transforms of the system time and the number of 
customers in the system. 

Remarks. 
1. Using (15) we can also find GL+(Z) or GQ+(z) as p 1. 
2. In the case of Poisson arrivals, it is important to notice that (16), (17) are exact 

and generalize the well known Pollaczek-Khinchine formulae for the M/G/1 

queue. 
3. By expanding uw(s) in powers of s we obtain 

p2(c2 + 1) -p(l _-c2) 
Ow(s) l- 1 - s + AS2 + o(s2), 

2A(1 - p) 
with 

1 (1 - C2)2 p4(1 + c2)2 p(1 - c2(1 + c2)\ a + x -2 a 
4 A2(1-p)2 A2(1-p)2 A2(1- p)2 

Then, as p -- 1, E[W] - [p2(C2 + 1) - p(l - c2)]/(2A(1 - p)), and E[W2] -- 2A. As 

a result, the coefficient of variation of W tends to one as p-l, which is 
consistent with the diffusion approximation for the waiting time in a GI/G/1 

queue, i.e. W is exponentially distributed in heavy traffic. 
4. The previous results for the GI/G/1 system can also be used in a GI/D/s queue. 

Since the service times are deterministic, every s customers are served by the 
same server. Therefore, as is well known, each customer sees a GI(S)/D/1 queue, 
where GIS) is the s-fold convolution of the interarrival distribution. As a result, 
the waiting time in queue in the GI/D/s queue is the same as in the GI(s)/D/1 

queue. 

The GI/G/oc queue. We now apply the asymptotic method to find approximate 
closed form expressions for the variance of the number in a GI/G/oc system. 

Theorem 6. In a GI/GI/ queue in heavy traffic conditions (E[X]-- x)) 

o GL(z) exp [-A(1 - z)E[X] + ?A(1 - Z)2(Ca - 1) fxf(x) dx], 

E[L]= AE[X], 

and 

o 
Var [L] = AE[X] + A(C2 - 1) xfd(x) dx. 

Proof. In a GI/G/Ic system the distributional law does not hold because 

Assumption A.2 is violated (i.e. the system allows overtaking). In the special case of 
the GI/D/oc queue, however, the distributional law does hold because, due to the 
deterministic service distribution, the customers exit the system in the order they 
arrived. Thus we can write L d 

N*(s). Moreover, because of the presence of an 
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infinite number of servers there is no waiting and thus S = X, i.e. the time in the 

system is exactly the service time. But, the pdf of X is fx(t) = 6(t - E[X]) and thus 
from (10) 

(18) GL(x)= K(z, E[X]). 

We will now decompose the GI/G/i system into a number of GI/D/oc systems. 
Suppose that instead of having a general service distribution the serivce time is 
P{X = xj} = pj, j = 1, * * *, k. The customers with service times xj can be treated as a 

separate class Cj of customers with arrival process being a renewal process with 

Laplace transform aj(s) 
a (s)pj 

aj(s) = a(s)p ak - 
(s)(1 p) = 1(s) 

i.e. the arrival rate and coefficient of variation for class Cj customers is 

Aj = Apj, c2 = 1 + pj(-1). 

If Lj, j = 1, , k is the number of class Cj customers in the system, then 
L =E = L. The random variables Lj are not independent since the arrival 

processes are not independent (in the special case of Poisson arrivals they are indeed 

independent). Using the approximation that they are indeed independent we obtain 
k 

GL(Z) fn GL,(). 
j=1 

Each class Cj sees a GI/D/o for which the distributional laws holds. Then applying 
(18), GL(z) = K(z, Xj). For large xj the asymptotic form of the distributional law of 
Theorem 3 is valid and thus 

K(z, xj) - exp {-xj[Aj(1 - z) - lA(1 - z)2(c - 1)]} 

Therefore, 

GL(z) exp (-A(1 - z) pjxj + A(1 - z)2(c - 1) p2). 
j=1 j=l 

Since any general service distribution is the limit of a sequence of mixtures of 
deterministic distributions we obtain that 

GL(x) exp (-A(1 - z)E[X] + 2A(1 - z)2(c - 1) f xfi x) dx), 

which leads to E[L] = AE[X], and Var [L] A ,E[X] + A[c2 - 1) fJxf2(x) dx. 

Remarks. 
1. For the case of Poisson arrivals (C2= 1) the expressions of the previous 

theorem are exact leading to the well known result G(z) = exp (-A(1- z) 
E[X]), i.e. L has a Poisson distribution with rate AE[X]. 

2. An alternative approach to obtain heavy traffic results for the GI/G/c queue via 
Brownian approximations is presented in [8], where the authors use a sequence of 
systems with the arrival rate A - oc (instead of assuming that E[X] - oc as in 
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Theorem 6). It is interesting to notice that the approach in [8] yields the same 
results for the first and second moment as Theorem 6. 

4. An exact method of analysis for overtake free systems 
In this section we focus our attention on overtake free systems with mixed 

generalized Erlang (MGE) arrival processes that satisfy Assumptions A and we 
describe a unified exact method to obtain the distributions L, Q, S, W, L+, and Q+. 
We should point out that the same approach can be used for overtake free systems 
with phase-type (PH) renewal process, as introduced in [19], since Theorem 2 as 
well as the analysis of this section still hold if we use the appropriate matrices C and 
D instead of Ao and A,. 

We first present the exact method in an algorithmic form in subsection 4.1 and 
then, in subsection 4.2, we illustrate its use in the case of MGEM/G/1 and 
MGEM/D/s queues under FIFO. 

4.1. An exact method of analysis. Theorem 2 enables us to present a unified exact 
method for solving overtake free systems with MGE arrivals under Assumptions A. 
We will use the notation of Section 2.2. 

Exact method analysis. 
1. Relate the transforms of L and S using the vector form of the distributional laws, 

(9). 
2. Relate the transforms of Q and W applying (9) to the queue. 
3. Relate the transforms S and W using the fact that S = W + X. 
4. Relate the transforms PL(Z) and PQ(z) using the characteristics of the system up 

to a vector term and use system properties to evaluate the vector (see Section 4.2 
for further details). 

5. Solve the 4 x4 system of equations from the previous 4 steps to find PL(Z), 
PQ(Z), the transforms of S and W. 

6. Find PL+(Z), and PQ+(Z) from (8). 

We are going to illustrate how the method works through an application in the 
next section. 

4.2. The MGEM/G/1 and MGEM/D/s queues under FIFO. We consider in this 
subsection an MGE/IG/1 queue, with a FIFO service discipline where the arrival 
process is a generalized Erlang process characterized by the matrices Ao and Al. Our 
goal is to evaluate the transforms of L, S, Q and W based on the exact method 
proposed in Section 4.1. We start with some definitions. 

Let a(s)= aN(s)/aD(s) be the Laplace transform of the interarrival distribution 
where aD(s), aN(S) are polynomials of degree M and less than M respectively. 
We define the row vectors H and H+ with H P{L = , R = i} and H+. 
P{L+ = 0, R+ = i}, for i = 1, , M. As will become apparent in the sequel, 
knowledge of H is necessary to complete the third step of the exact method and 
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therefore we begin the analysis of the MGEM/G/1 queue by evaluating H together 
with some other important quantities of the system. 

In particular, let F(s) be the busy period matrix with [r(s)],j = yij(s), i, j= 
1, * * , M denoting the Laplace transform of a sub-busy period interval that ends 
with the A TC = j given that it started with the A TC = i. Note that though a busy 
period interval is initialized by the first customer that arrives after an idle interval, a 
sub-busy period is initialized whenever a customer enters service (see, for example, 
[14] p. 210) and therefore at the beginning of a sub-busy period the A TC can be in 
any stage. 

Let, also C(s) be the busy cycle matrix with [C(s)],j =cij(s), i,j= 1,, M 

denoting the Laplace transform of a busy cycle interval that ends with a customer 
leaving the system empty and the ATC =j given that it started with a customer 
leaving the system empty and the A TC = i. 

Proposition 1. In a MGEM/G/1 queueing system where the interarrival process is 
characterized by the matrices Ao and A1 and the service time is denoted by X we have 
that the busy period matrix F(s) satisfies 

F(s) = (x(S + Ao + A 1(s)). 

Furthermore, the busy cycle matrix C(s) is given by 

C(s) = (Is + Ao)- A,r(s). 

Finally, the vector H satisfies 

H = A(1 - p)H+Ao and H = 1 - p, 

with H+ the left eigenvector of lim,,o C(s). 

The proof of this proposition is presented in Appendix A. 

Remarks. 
1. The above results can also be obtained using an embedded Markov chain 

approach (see, for example, [16]). We presented the above proposition for the 
completeness of our analysis and because its proof is based on simple probabilis- 
tic arguments. 

2. The transform y(s) of the busy period distribution is given by y(s) = erF(s)l'. 

Next, we prove the following theorem. 

Theorem 7. In a MGEMIG/1 queue under FIFO 

(19) PQ(Z) = (1 - z)H()x(Ao + zA) - zl)-1, 

(20) PL(Z) = (1 - z)H(<Zx(Ao + zA) - zI)-l"x(Ao + zA), 

and 

(21) A( ) aOaN(-S) A(1 - p)s-x ) r (21) ow(S)= ( f(- ( -)s)--, aN(O) A(l 
- 

a(-s)x(s)) r=1 Xr 
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where Xr, r = 1, . , M - 1 are the M - 1 roots of the equation a(-s)4x(s) = 1, 
Re (s)> 0, and H is given in Proposition 1. 

Proof Since this system is overtake free we will use the exact method of analysis 
described in the previous subsection. Thus, performing the first two steps of the 
exact method we use (9) for both the system and the queue and we obtain: 

PL(z)(Ao + zAl) = A(1 - z)e',(As(Ao + zAl), 
and 

PQ(z)(AO + zAj) = A(1 - z)el~(Ao + zAD. 

Using the fact that S = W + X we obtain that 

(22) PL(Z) = PQ(z)IDx(A0 + zA1). 

Applying the fourth step, the number of customers in the queue and the number 
of customers in the system are also related as follows: 

(23) PL(Z) = (1 - z)H + ZPQ(z), 

where H is an M-vector, with H, ~ P{L = 0, R = i}, that is given in Proposition 1. 
We next follow the fifth step, where we combine (22) and (23) to obtain (19) and 

(20). Then, we use (9) in order to find the transform of the waiting time distribution 
and we obtain 

(24) ejADw(A0 + zA1)((Dx(A0 + zA1) - zI) = (1IA)H(A0 + zA1). 

We now choose a z such that AO + zAI has M linearly independent eigenvectors and 
thus it can be written as AO + zAl = E(z)O(z),'(z), where e(z) is the diagonal 
matrix of the eigenvalues of AO + zAl which we denote by 61(z) for i = 1, . . ., M. 
Bertsimas and Nakazato [3] have shown that the roots of the equation satisfy 
za&,6(z))= 1, i=1, ,M. The columns of H(z) are the right eigenvectors 
of AO + zAI, which we denote by 6'(0,(z)). Moreover, 

fDw(A0 + zAl) = E(z)(Dw(O(z))I '(z), 

(Ix(Ao + zAj) - zI = H(z)((Dx(O(z)) - zI)E E1(z), 

and substituting in (24) we obtain 

ej..(z )Dw(E(z))(4'x(O(Z)) - zI) = (1IA)HE(z)e(z) 
or 

0Pw(0i(z))6i(0i(zD)(0x(6(z)) - z) =(1IA)H6'(91(z))O1(z), 

with 41(01(z)) being the first component of 6'(6j(z)) (the previous relation also 
holds for every eigenvalue 6,(z), i =1 ... M). Since za (-9,(z)) = 1 we have 

4w(O1(z)) = K g()((z-(z 
A(a(-l(z)0x(0lz))- 1) 
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where the function g(01(z)) must have an appropriate form in order to maintain the 
analytical character of 4w(0i(z)). Therefore, 

(25) 4w(s)= K a(s) (s). 
A(a(-s)x(s) - 1) 

Since (w(s) is analytic, g(s) = aD(-s) rIIM1 xr - s, where Xr, r = 1, * * , M - 1 are 
the M- 1 roots of the equation a(-s)Ox(s)= 1, Re (s)>0, and K is a constant 
such that lims0o Ow(s)= 1, which leads to (21). 

Remarks. 
1. Equation (19) was also obtained in [16] for the more general case of a queue with 

vacations and non-renewal arrival processes, while (21) is a generalization of the 
Pollaczek-Khinchine formula for the M/G/1 queue. It is interesting to note that 
(21) could have been obtained using Hilbert factorization techniques [3]. 
Furthermore, it is the solution to the Volterra integral equations presented in [20] 
(see also [21]) in the case where the arrivals are MGE. It is remarkable that we 
were able to derive these formulae just from the distributional laws. 

2. The previous results for the MGEM/G/1 system can also be used in a 
MGEM/D/s queue (see Remark 4 after Theorem 6). 

5. The GI/GII queue with generalized vacations 

In this section we consider a class of GI/G/1 queueing models with a single server 
who is unavailable for occasional intervals of time. Whenever the server is either 
unavailable or idle we say that he is 'on vacation'. Formally the GI/G/1 queue with 
generalized vacations is defined as follows. 

GI/G/1 with generalized vacations. 
G1. The system satisfies Assumptions A. In particular, as long as the server is busy, 
customers are served in a non-preemptive FIFO order. 
G2. The service mechanism need not be exhaustive. When the server begins his 
vacation he may leave customers behind depending on the service mechanism. We 
denote by Zo the number of customers present in the system in steady state when a 
vacation interval starts. Z0 is determined by the service mechanism. 
G3. Each vacation interval is distributed as a random variable V and has Laplace 
transform X(v(s). We assume that the number of arrivals during V is independent of 
Zo. 

This system is a generalization of the GI/G/1 queue with exhaustive vacations 
considered in Doshi [5], and in Lucantoni et al. [16], in which Zo = 0 (although the 
analysis in [16] holds for a more general class of non-renewal arrivals). It also 
generalizes the M/G/1 system with generalized vacations considered in [6] (see also 
the discussion in [26], p. 457) in the sense that it allows more general arrival 
processes. In some of their results, however, Fuhrmann and Cooper [6] relax 
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Assumption G3 above, allowing the vacation time to depend on the arrival process. 
However, in order to prove sharper decomposition results they make exactly the 
same assumption (their Assumption 6). Our results also generalize the results of 
Keilson and Servi [13] in two respects: they consider Poisson arrivals and assume 
exhaustive service Zo = 0. 

Our goal in this section is to illustrate a unified way based on the distributional 
laws to solve queues with generalized vacations based on the exact method of 

analysis from Section 4.1. Corollaries of our results include the decomposition 
results established in [5], [16], [6] and [13]. 

Examples of the class of GI/G/1 queues with generalized vacations that we 
consider in this section include: 
1. The standard GI/G/1 queue, if all vacations correspond to idle periods (i.e. 

V- 0). 
2. The GI/G/1 queue with exhaustive vacations, in which, whenever the server is 

busy, he serves the system exhaustively, i.e. Z0 = 0. 
3. The GI/G/1 queue with gated vacations, in which the server accepts only those 

customers who were waiting when the server returned from vacation, i.e. Zo is 
distributed according to the number of customers who arrived after the server 
returned from vacation. 

4. The GI/G/1 queue with limited service, in which the server serves up to k 
customers in each visit and then takes a vacation. 

5. Queues served in cyclic order considered in [7]. The vacations associated with any 
particular queue correspond to times when the server is visiting the other queues. 

5.1. Analysis of MGEM/G/1 queue with generalized vacations. We consider the 

system in steady state and we let L,, Q,, and Rv be the number of customers in the 
system, the number of customers in the queue and the ATC stage of the arrival 
process respectively, when a random observer observes the system with generalized 
vacations. Let V* be the elapsed time since the last vacation began (the backward 
recurrence time of V). Let B be the event that the server is busy at the time of 
observation. Obviously B' is the event that the server is on vacation at the time of 
observation. 

Let R0 and Z0 be the ATC stage of the arrival process and the number of 
customers present in the system, when a vacation interval starts. We define 

4 [PlZo = nnRo = m I B'}]=M1 and ;(z) - =o z" . We view the vector gen- 
erating function ;(z) as defining the service mechanism. Our main theorem is as 
follows. 

Theorem 8. In an MGEM/G/1 system with generalized vacations satisfying 
Assumptions G1-G3 that has mixed generalized Erlang interarrival times charac- 
terized by matrices Ao and A1, vacations distributed according to the random variable 
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V and service mechanism characterized by the vector generating function ;(z) the 
vector generating function of the number of customers in the queue and in the system 
is given by 

(26) PQ,(z) = (1 - p)~(z)(Dv*(Ao + zA,)(1 - z)(Qx(Ao + zAi) - zI)-', 

(27) PL,(z) = (1 - p)S(z)V(*(Ao + zA,)(1 - z)((D,(Ao + zAi) - zI)-'('x(Ao + zA,). 

Proof Let Sv, Wv, X be the system, waiting and service time of a customer. Let p 
be the traffic intensity. Because of G1 using the exact method of analysis for 
overtake free systems and applying (22) for Q. and LV we obtain 

(28) PL(Z) = PQ(z)(X(Ao + zA1). 

Our goal is to establish another relation between PLv(Z) and PQ(z). Consider a 
random observer of the system. Recall that B is the event that the server is busy and 
B' is the event that the server is on vacation, at the time of observation. By applying 
Little's law to the server P{B} = p and P{B'} = 1 - p. By conditioning on the event B 
we obtain 

(29) P{Qv = n, R, = i} = pP{Q = n, Rv = i + B} + (1 - p)P{Qv = n, Rv = i B'}. 

Conditioning on Z0, Ro, V* we obtain 

P{Q = n, Rv =i I B'} 
M n ox 

=I J P{Q =n R=i B',V*=t,Zo=m,Ro= k} 
k=1 m=O 

x P({Z = m, Ro = k, V* = t B') dt 
(30) M n-1 M n-1 Ix 

= >~ P{Zo = m, Ro =k B'} ak(t)a( '(t) * a-- (t)a) dFv.(t) 
k=l m=O 

+ P{Zo = n, Ro = k |B'} a(t) dFv*(t) 
k=l O 

where we used the independence of V* and (Z0, Ro) (Assumption G3 in the 
definition of queues with generalized vacations). Let B(z) - [n=oP{Qv = n, 
RV =i B}zn]Ml. Taking generating functions in (29) and using (45) to (30), we 
obtain 

PQV(Z) = pB(z) + (1 - p)~(z),v*(Ao + zA,). 

Similarly, 

P{L, = n, R, = i} = pP{Q, = n - 1 n Rv = i B B} + (1 - p)P{Q, = n n Rv = i | B}, 

from where, by taking generating functions, we obtain 

PL(z) = pzB(z) + (1 - p)~(z)(.v*(Ao + zA,). 
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Therefore, 

(31) PL(z) = zPQU(z) + (1 - z)(1 - p)((z)Dv.(Ao + zA), 

which combined with (28) gives (27) and (26). 

Remarks. 
1. Equation (27), as well as (26), is not formally a decomposition result. It 

demonstrates, however the contributions of the various characteristics of the 
system to the system length distribution. The first term ;(z) represents the effect 
of the service mechanism used. The second term bv*(Ao + zA1) represents 
the effect of the vacation, while the third term (1 - p)(l - z)(FDx(Ao + zA1)- 
zI)-1'x(Ao + zA1) represents the contribution from the underlying MGEM/G/1 
queue without vacations. 

2. In the case of Poisson arrivals we obtain 

PL,(z) ;= (z)4v(A - Az) (1 - p)(1 - z)4x(A - Az) 
kx(A -Az)- z 

which is a formal decomposition result obtained in [6]. The number of customers 
in the system is distributed as the sum of three independent random variables: (1) 
the number of customers that are left in the system when a vacation begins, (2) 
the number of customers that arrive in the system during a vacation period, and 
(3) the number of customers in a M/G/1 queue without vacations. A similar 
relation is, obviously, obtained for the queue length distribution. 

3. Assumption G3 was only used in deriving (30). Without Assumption G3, instead 
of (31) we would obtain 

(32) PL(z) = ZPQV(Z) + (1 - )(1 - P)PLIB'(Z), 

where PLvIB'(Z) is the vector generating function of the number in the system 
given that the server is on vacation. Combining (32) with (28) we obtain 

PL,(Z) = PL,IB'(Z)(1 - p)(1 - )x(Ao + )- I) (A + zAl), 

which is the generalization of Proposition 5 in [6]. 

5.2. Applications of the MGEM/G/1 with generalized vacations. In the previous 
subsection we have been able to derive a formula for the number of customers in 
the system and in the queue for an MGEM/G/1 queue with generalized vacations as 
a function of ~(z). Thus, given that one is able to solve for j(z), the queue and 
system length distributions are fully characterized, and from them the waiting and 
system time through the distributional laws. In this subsection we will consider some 
specific applications of the previous analysis that have interesting consequences. 
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The MGEM/G/1 queue with exhaustive vacations. For the case of exhaustive 
vacations Theorem 8 implies the decomposition result of Doshi [5] that was also 
derived for a class of non-renewal arrival processes in [16]. 

Theorem 9. (Doshi [5]) For the MGEM/G/1 with vacations V under FIFO, the 

waiting time is the sum of the waiting time of a MGEI/G/1 and the backward 
recurrence time of the vacation V. 

Proof. In this case Z0 = 0 and therefore ;(z) = P{Z = 0, Ro = i}1= = R, i.e. a 
vector independent of z. Then (27) can be written, since all the matrices commute, 

PLV(Z) = (1 - p)R(l - z)(x(Ao + zA) - zI)-' x(Ao + zA,)Tv.(Ao + zA,). 

In a regular MGEM/G/1 queue, however, (20) holds, i.e. 

PL(z) = H(1 - z)((Dx(Ao + zA1) - zI)-l(x(Ao + zA1). 

But PLv(1) = PL(1), since the ith component of each vector is the probability that the 
ATC is in stage i which is independent of the vacation. Taking limits as z -- 1 in the 
two previous equations we obtain 

(1 - p)R(v.(Ao + Al) = H. 

Therefore, in an MGEI/GI1 with exhaustive vacations 

PL(Z) = HDIv*(Ao + Al)-'(l - z)(IDx(Ao + zAi) - zI)-1 
(33) 

x ~x(Ao + zA,)v.(Ao + zA), 

where the vector H is computed in Proposition 1. Notice that (33) offers a complete 
solution of the MGEI/G/1 queue with exhaustive vacations. 

Following exactly the same approach leading to (25) in the proof of Theorem 7 we 
obtain that 

4w(s) = sK Os1vw(s)a(-s) W(s) = K A(a(-s)x( (s) - 1) g( (S) ( 

i.e. W - W ( V*. 

The MGEI/G/1 queue with gated vacations. In a gated vacation system our goal 
is to find 5(z). For this reason we define the following random variables. 

Let J be the time the server spends in the system immediately after he returns 
from vacation until he starts a new one. Let Fj(t) = P{J - t} and fj(s) be the Laplace 
transform of J. Let Rj be the ATC stage of the arrival process and N be the number 
of the customers that the server finds at the system just after the end of the vacation. 
We define RJ = P{RJ = m}m= and N(z) = E[zN]. Finally, we define also the vectors 

= P{N = n n Rj = m}M=l and N(z) = n=oX zn Note that Rj =N(1). 
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From the definition of the service mechanism in a gated system, Zo is distributed 

according to the number of customers who arrived during J, thus: 

3C 

zn"P{Zo= n, Ro = k Rj=m} 
n=O 

= ak(t) dF(t)+ > z" fam(t) a(n"- (t) *a(t)dFj(t), 
O*0 n 1n=l O 

which leads to 

zP{Zo=n, Ro=k} 
n=O 

r R= , = m}[f ak(t) dF(t) + > z" am(t -1)(t) * a-(t) d(t) 
m=l O n=l 

which in matrix notation becomes 

(34) g(z) = N(1)j(Ao + zA). 

Furthermore, the time interval J lasts as long as the server is servicing the N 
customers he finds upon his arrival. So 

(35) )J(s) = N(kx(S)). 

Finally, we need to evaluate N(z) from the characteristics of the system. Recalling 
the definition of the gated vacation system we see that N includes the customers that 
the server left behind in the system before starting his vacation as well as 
the customers that arrived during the vacation interval. Therefore, for n 1, 
P{N = n, RJ = 1} = k=0 E= P{Zo = k, Ro = m} fo am(t) * a(-k- l)(t)* a (t) dFv(t). 

Taking generating functions: 

(36) N(z) = g(z)( (Ao + zA 1). 

By combining (34), (35) and (36) we have 

(37) S(z) = g(1)v (Ao + A l)((Ao + zA ), 

where 

(38) 4J(S) = (4+x(S))Dv(Ao + Xx(s)Ai)1. 

Equations (37) and (38) fully characterize s(z) as we can solve for all moments. 
Moreover, if we use Theorem 8 and the distributional laws we can fully characterize 
the system. 

Remark. Notice that in the Poisson case the recursion formula takes the form 

g(z) = (,x(A - Az))Ov(A - A,x(A - Az)). 
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6. Priority queues 

Priority queues are important in communication and manufacturing systems 
where jobs of different significance need to be serviced. In addition, in several 

applications strict priority rules (for example, the so-called c/a-rule) minimize a 

weighted combination of expected waiting times. It is therefore important to be able 
to analyze priority queues. 

We consider single server priority queueing systems with mixed generalized 
Erlang arrivals, in which there are two distinct customer classes, numbered 1 and 2. 
Customers of class 1 have priority over those of class 2. Let a(t), b(t) be the pdf of 
the interarrival time for the high priority class 1 and the low priority class 2 
respectively. We assume that they are mixed generalized Erlangs of order Mi, M2 

respectively. We denote with 1/Ai and 1/A2 the means of the arrival processes. The 
two classes have different (general) service time distributions with means E[XI] and 

E[X2], and they are served by a single server. 
We assume that within the same class customers are served in a FIFO order. 

Although priority queues allow overtaking among classes, within the same class no 

overtaking can take place and therefore the distributional laws are applicable. In this 
section we use the distributional laws to derive the distributions of various 

performance measures. Our results generalize earlier work of Keilson and Servi 
[13] for Poisson arrivals. 

We consider different types of priorities (preemptive repeat, preemptive resume, 
non-preemptive). The type of priority used does not affect the service time of class 
1, but affects the service time of class 2. In order to develop a generic model to 

analyze priority queues in a unified way, we define the effective senrice time, G,, 
i 1, 2, as the time from the beginning of service until the customer of class i 

completes service (GI = X1, regardless of the priority rule used). We can visualize 
the effective service time as the time spent in a service box. The service may be 

interrupted and resumed from where it was left or may start over, but the customer 
is assumed to stay in the service box until he is completely served. In this setting, the 
time in queue refers to the time from the arrival of the customer until the customer 
enters the service box. 

The section is organized as follows. In Section 6.1 we find the effective service 
time distribution in various preemptive systems as a function of the busy period 
matrix. In Section 6.2 we analyze systems with preemptive priorities, while in 
Section 6.3 we analyze systems with non-preemptive priorities. 

6.1. Effective service time distribution in preemptive systems. According to pre- 
emptive disciplines, whenever a high priority customer finds a lower priority 
customer in service, he interrupts the service in progress and starts his own 

immediately. Once there is no higher priority customer left in the system, the 

interrupted customer reenters service and depending upon the manner in which he is 
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serviced on his reentrance, the preemptive discipline can be further broken down 
into the following three categories. 

(i) Preemptive resume discipline. Under this discipline the interrupted customer 
continues his service from the point of interruption. 

(ii) Preemptive repeat different discipline. Under this discipline the interrupted 
customer continues his service by resampling. 

(iii) Preemptive repeat identical discipline. Under this discipline the interrupted 
customer continues his service without resampling. 

Each of these three preemptive disciplines is going to affect the effective service time 
of class 2 customers. In this section we calculate the effective service time in all the 
three preemptive categories as a function of the class 1 busy period matrix, Fr(s). 

We define random variables Gy, i, j = 1, * * , M1, to denote the effective service 
time of a class 2 customer such that the A TC- = j when the class 2 customer finishes 
service given that the A TC, = i when this class 2 customer started service. Let 

4Gq#(s) be the Laplace transform of G~ and let G2(s) denote the matrix with 
elements 4G>J(s). Our goal in this section is to compute the matrix G2(s). 

Preemptive resume discipline. 

Proposition 2. In a single server system with two priority classes each of which 
satisfies Assumptions A and has mixed generalized Erlang interarrival times 
characterized by matrices Ao, A1 and Bo, B1 respectively, the effective service time of 
the class 2 customers for the preemptive resume discipline is given as follows: 

G2(s) = Ax2(Ao + A,rl(S) + SI). 

Proof According to the preemptive resume discipline, whenever a low priority 
customer service is interrupted, the duration of the interruption is exactly the 
duration of a high priority customer busy period. Furthermore, due to the 
characteristics of the mixed generalized Erlang arrival process we condition on Rls, 
the ATC, stage immediately before a low priority customer enters service. Let 

cG2p(s) be the Laplace transform of the effective service time of a class 2 customer 
that ends leaving the ATC1 = i given that it started with the ATCI = k. Then 

M, 
sx + 

E[e-sG' X2 = x] = e a(x) + [(s)],j,ak(x) * a(x) 
j-=1 

M1 M1 

+ E E [rl(s)]l,j,l[r(s)],ak(x)* aj,(X) * a(x)+ * }, 
jl=l h=l 

where the first of the right-hand side terms represents the probability that there are 
no interruptions during the regular service time of the low priority customer, the 
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second the probability of having just one interruption, where we have to take into 
account the ATC stage of the high priority customer at the end of the type 1 busy 
period, and so on. By writing the previous formula in matrix notation we obtain 

[ai(x) ... a(x) a (a(x) 
E[e-sG2 l x2 = x] = e-xe * e e-e 

- 0 ** aMl(x)_ \aM(X) 
* (al(x)[r,(s)]1l, + .. + aM,(x)[rl(s)]1,M,)(n-) 
* ([r,(s)]l,ll(X) +'' * + [rl(s)]l,M1aM(x))e'. 

Using (45) we obtain 

E[e -SG' X2 = x] = e- ke-(AO+Ar'(s))xet. 

Therefore, 

E[e-sG2] = ekX2,(Ao + A1rT(s) + sI)e', 

and hence, 

G2(s) = X,(Ao + A F,(s) + sI). 

Remark. For the Poisson case we obtain cG2(5) = 4X2(A1 - A1 y(s) + s), which is 
in agreement with Jaiswal [11]. 

Preemptive repeat disciplines. Let 

a,(t) 

a(t)= (a,(t), , ak(t), a , aM(t)) and A(t) = 

LaM,(t)J 

Proposition 3. The effective service time G2 for the preemptive repeat discipline 
under the assumptions of Proposition 1 is given as follows. 

* In the case of the preemptive repeat different discipline 

G2(s) = A(x)e-xfx2(x) dxI[ - fx2(x) la'(y)e- Sdy dxer,T(s) . 

* In the case of the preemptive repeat identical discipline 

G2(s) = A(x)[I - a (y)e-SYdye,F,(s)] e-SXf2(x)dx. 

Proof. The underlying experiment is the following. Assume that a class 2 
customer enters the service facility at To and his service time is given by a value of 
the r.v. X2. At the moment he enters service there are no type 1 customers in the 

system and the A TC1 = k. There are two possibilities for the remaining time until 
the next arrival of the high priority arrival process: 

* either it is greater than the selected value of X2 and in this case G2 = X2, where 
i is the stage of the ATC1 when the low priority finishes service; or 
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* it is less than the selected value of X2 and at the moment that the next type 1 
customer arrives the service of the type 2 customer is interrupted and it starts 
over with a new value of the r.v. X2 as soon as the busy period initialized by the 

type 1 customer is over for the preemptive repeat different discipline or with the 
same value of the r.v. X2 for the preemptive repeat identical discipline. 

So for the repeat different case, conditioning on X2 we obtain 

E[e-2' X2 = x] = ak(x)e-S +f ak(y)e-SY dye,1F(s)G2(s)g. 

Thus, 

cfG(s) = a(x)e-fx(x) dx + fx(x) fak(y)e ydy dxeFl(s)2(G(s)'. 

And in matrix form: 

G2(s) = A(x)e-Sfxf(x) dx I - fx2(x) da (y)e-Y dydxe1F(s) . 

Finally, for the repeat identical case: 

G2(s) = A(x)[I- a'(y)e-"' dyel(s) e-sfx(x)dx. 

In the case of Poisson arrivals we can obtain the results of Jaiswal [11], namely: 

(X2(S + Ai) 
OG2(S)= 

1 (- (l- 2(S + A))y,(s) 

s + A, 
fo iff e ee e eea de a d e 1 - +A(1 - e-(s+AIx)y)(s) 

for the preemptive repeat different and the preemptive repeat identical discipline, 
respectively. 

6.2. Preemptive priorities. In this section we analyze a generic preemptive 
discipline in terms of the distribution of the effective service time. In this way we are 
able to analyze all preemptive disciplines we consider in a unified way. 

Let Li, Q,, Si, Wi, Ri, i = 1, 2 be the system and queue length, system and waiting 
time and ATC stage of the arrival process, respectively, of class i = 1, 2. Notice that 
the low priority customer that may be in the service box without being served is not 
taken into account in the number of low priority customers in the queue. 

Let L,, Qa and Ra be the number of customers of class i in the system, in the 

queue and the ATC stage of class i, respectively, just before an arrival of a class 1 
customer. 

614 



A unified method to analyze overtake free queueing systems 

High priority customers. As long as the discipline is preemptive the high priority 
customers see a usual MGEM,/G/1 queue. Therefore, Theorem 8 can be used to find 
the distributions of L1, Ql, Si, Wi. 

Low priority customers. We will apply the exact method of analysis discussed in 
Section 4. We start by proving a relation between the vector z-transform 

(generating function) of the number of customers in the system from the low priority 
class, PL2(z), and the vector generating function of the number of customers in the 

queue from the low priority class, PQ2(Z), i.e. implementing the fourth step of the 
method. 

Let us first introduce the necessary notation. Let E2 be the number of class 2 
customers in queue given that no class 2 customer is in the service box but the 

system is not empty. Let A2 be the number of class 2 customers in queue given that 
there is a class 2 customer in the service box. We introduce the vector generating 
functions 

PE2(Z) 
a 

z"[P{E2 = n n R2 = i}] 2 
n=O 

and 

2(Z) z[P{A2 = n R2 i=}]:M2 n=O 

Furthermore, let h and k be M2 vectors such that hi - P{R2 = i, L1 = 0, L2 = 0} and 
k P{R= r, L = 0, L = 0}. Finally, let F* be the backward recurrence time 

(age) of a class 1 busy period that ended while ATC, = i. Then the Laplace 
transform of Fj, y* (s) is given by 

y-(s) = (1 -[ejlr(s)i])/sE[r,]. 

We also introduce the traffic intensities pi= AiE[Xi], p = pi + P2 and we define 

pa= P{a class 2 customer is in the service box}. We now prove the following 
proposition. 

Proposition 4. In a preemptive queueing system with two priority classes each of 
which satisfies Assumptions A and has mixed generalized Erlang interarrival times 
characterized by matrices Ao, A1 and Bo, B1, respectively, the following relation 
holds: 

(39) PL2(z) = (1 - z)h + (1 - z)(p - pa2)kBDr,(Bo + zB,) + zPQ(z), 

where the vectors h and k are given by (48) in Appendix B. 

Proof. We start by noticing that at a random observation time there are three 

possibilities for the state of the system: (a) the system is empty (with probability 
1 - p), (b) the system is not empty but there is no class 2 customer in the service box 

(with probability p-p-2), and (c) the system is not empty and there is a class 2 
customer in the service box (with probability PA2). 
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Conditioning on those three events and recalling that hi is the probability that the 

system is empty and R2 = i, we have that 

PQ2(z) = h + pA2, (z) + (p - p2)PE2(z), 
and 

PL(z) = h + P^ZPA2(z) + (p -PA2)PE2(z). 

Next we need to evaluate the vector generating function PE2(Z). Notice that since 
we assumed a preemptive discipline, class 1 customers are not influenced by the fact 
that there is no low priority customer in the service box. In order for a random 
observer to see n ' 1 class 2 customers given that there is no class 2 customer in the 
service box, he has to arrive during a class 1 busy period. Therefore, if we denote 

by k, the probability that the high priority customer who initialized the last class 1 

busy period found, upon his arrival, the class 2 customer in stage r we have, 
for n - 1, 

P{E2 = n, R2 = i} = kr br(t) * b(n-1)(t) * bl(t) dFr (t) 
r=l 

Similarly, 
M2 

P{E2 = 0, R2 = i} = > k , b{(t) dFr(t), 
r=l 0 

where Fr,(t) is the cdf of the forward recurrence time of a class 1 busy period. 
Taking generating functions (39) follows. 

Notice that in the previous proposition the probability pA is not known. We will 
however calculate it implicitly in the next theorem. 

Theorem 10. In a preemptive queueing system with two priority classes each of 
which satisfies Assumptions A and has mixed generalized Erlang interarrival times 
characterized by matrices Ao, Al and Bo, B1 respectively, the Laplace transform of 
the waiting and system time of the low priority customers satisfy 

(s2(Bo + zBi) - z(Dw2(Bo + zB1) = - [h + (p - p)kcr(Bo + zBi)](Bo + zB,)- 
A2 

and 
M1 

Ds2(sI) = > Yw2(sI A + Ao + A)eG(sI). 
i=1 

Furthermore, the number of low priority customers in the queue is given as 

PQ2(z)(Bo + zBj) = A2(1 - z)eg',w2(Bo + zBD), 

where Fir denotes the age of the high priority busy period, Yk = (Al/Al,k) In=i (1 - 

p1,i), the vectors h and k are given by (48) in Appendix B and Pa2 is calculated by 
insisting that limz.l PQ2(z)l' = 1. 
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Proof. Since we assumed that among each class customers are served in a FIFO 
basis, the distributional laws are applicable. Therefore, performing the first two steps 
of the exact method we use (9) for both the queue plus the server and just the queue 
to obtain: 

PL2(z)(Bo + zB1) = A2(1 - z)i1s2(Bo + zB0), 

PQ2(z)(Bo + zB1) = A2( - z)e Iw2(Bo + zB1). 

Recall that in evaluating the number of customers in the queue we are not 
counting the customer in the service box and similarly the waiting time does not 
account for the time spent in the service box. 

We proceed now to implement the third step, namely obtain a relation between S2 
and W2. It is important to notice that, in this step, we need to use the notion of the 
effective service time which depends on the dynamics of the high priority customers. 
To be more specific, recall that we define in Section 6.1 the random variable G~, 
i, j = 1, * * , M1, to be the effective service time of a class 2 customer such that the 
A TC1 = j when the class 2 customer finishes service given that the A TC1 = i when 
this class 2 customer started service. In Section 6.1 we actually calculated the 
Laplace transforms of G~, for all i, j. For the rest of our analysis let us also define 
G2, i = 1, * , MI, to be the effective service time of a class 2 customer given that 
A TC1 = i when this class 2 customer started service. Clearly, the Laplace transform 
of G2, G~(S) = eiG2(s)l', using the notation of Section 6.1. 

Furthermore, we define R 2 to be the stage of the ATC1 at an arrival epoch of 
class 2 customers and Y, such that Yk P {Rl2= k} for k = 1, *. , Ml. Due to the 

independence of the arrival processes we can easily see that Yk = P{Rl = k} = 

(Al/Al k) ni= (1-pl i), where the second equality follows from the properties of 
the MGEM process. 

Let us now proceed to relate S2 and W2 using G2. 

E[e-' I R12 = k, W2 = w, A TC, = i at the end of the waiting] = e- f e-' dFG~(x). 

Unconditioning we get that 

Ml 

Ps2(sI) = > YDw2(sI + Ao + A,)e-T (sl). 
i=1 

Applying the fourth step, the number of customers in the queue and the number 
of customers in the system are also related from Proposition 4 as follows: 

PL2(Z) = (1 - z)h + (1 - z)(p - pA)kDr,(Bo + zB,) + zPQ2(z), 

where the vectors h and k are given in Appendix B. 
We next follow the fifth step, where we combine the above equations to prove the 

theorem. 
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Renmarks. 
1. Having found W2 we can use the rest of the relations to obtain S2. L2 and Q2. 
2. In the case of Poisson arrival processes we have that 4,(s) = wW(s)dc)G(), so 

that Step 5 yields 

I (2) 1 l,)(1-p A2( - ) + Ai(l - ac(A2 -Az)) GL = ( - p)( - Pi)(2 - z) - z 
A2 OG2(A2 

which is exactly the relation obtained in Keilson and Servi [13] using a different 
derivation. The probability p%, can be obtained either by requiring 
lim., GQ,(z)= 1, which in this case leads to p,= A2E[G2] or by applying 
Little's law in the service box. 

6.3. Non-preemptive priorities. In this section we analyze the single server 
priority system under a non-preemptive discipline, where an arriving high priority 
customer that finds a low priority customer in service does not interrupt the service 
in progress. Therefore, the effective service time for class 2 customers under a 
non-preemptive priority discipline is G2 = X2. Furthermore, as no customer stays in 
the service box unless he is actually being served, the waiting time is in this case 
defined without ambiguity, exactly as in the case of a single MGEMIG/1 queue. We 
will first calculate the distribution of the number of class 1 customers in the queue 
and in the system. 

High priority customers. Due to the fact that we do not allow preemption, the 
number of class 1 customers in the queue as well as their waiting time are 
influenced by the possible existence of a class 2 customer in the service facility. Let 
Rbs be the state of the A TC1, just before a class 2 customer enters service. 

Let B, be the event that the server is busy servicing a class i customer at a random 
time of observation. 

Let Al be the number of class 1 customers in queue given that there is a class 1 
customer in service. We introduce the vector generating function 
PA,(z) 

A 
z=oz"[P{A =n fnR1 = i}],i, and the scalar generating function 

G^,(z) = z=oz"P{Al = n}. We also introduce the row vectors g and f, such that 
gi P{L1 = O, Lz = O, R1 = i} and rr, P{Rs = r}. 

Theorem 11. In a non-preemptive queueing system with two priority classes each of 
which satisfies Assumptions A and has mixed generalized Erlang interarrival times 
characterized by matrices Ao, Al and Bo, B, respectively, the vector generating 
function of the number of class 1 customers in the queue and in the system is given as 
a function of the system characteristics as follows: 

(40) PQ,(Z) = (1 - z)[p2fitx4(Ao + zA,) + g][x,(Ao + zA,) - z]-', 

(41) PL,(z) = (1 - z)[p2Itx'(Ao + zA) + g][Ix,(Ao + zA1) - zI]-rx,(Ao + zA,), 
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where g is given byl (49) in Appendix B and it satisfies: 

(42) p2itf~'(A0 + A1) = H - 

where H is given in Proposition 1. 

Proof From the vector distributional law (22) we have 

(43) PL,(Z) = PQ,(Z )$X,(AO + -Al). 

We should establish a second relation between PL,(z) and PQ,(z). Consider a 
random observer of the system and let Bi be the event that the server is busy 
servicing a class i customer at the time of observation. By applying Little's law to the 
server P{Bi}= pi and by conditioning on the events B, we have, for n 1, 

P{Q1 = n, R1 = i} = p1P{Q1 = n, R1 = i I BI + P2P{Q1 = n, R1 = iB21, 

or, by using the definition of Al, 

P{Ql = n, R1 = i}= p1P{A1 = n, RI = i}+ p2P{Q1 = n, R1 = i I B,11 

and for n = 0 we also have 

P{Q1 = O, RI = i}= p1P{A1 = 0, R, = i}+ p2P{Q1 =0, RI = i I B2} 

+ P{L, =0, L, = 0, R, =i}, 

or equivalently 

P{Q1 = O,R1 = i}= p^P{A = 0, RI = i} + p2PQ1 =0, R = 2i B}+ gi. 

Furthermore, if we denote by ir, the probability that the A TC1 = r just before a 
type 2 customer enters service we have that, for n 1 1, 

P{QI = n, R= B= f a(t )* 1(t) * a' (t) dFx-(t) 

and 

P{QI 0, RI i IB2} 7rrfa'(t)dFx.Kt). 

By taking generating vector functions we get 

PQ,(Z) = pIPA,(Z) + P2 x-(AO + ZA1) + g 

Using the same analysis for the number of customers in the system we also obtain 

PLI(Z) = PIZPA1(z) + p2itCt~x(A0 + zA1) + g. 

Combining the last two equations we have 

(44) PL,(Z) = ZPQ,(Z)+ P2( - Z)' 1.(A0+ZA1) + (1- z)g. 
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From (43) and (44) we obtain (40) and (41). Finally, we need to calculate the vectors 
ff and g. Vector g, where, gi P{LI = 0, L2 = 0, R1 = i), is calculated in Appendix B. 
To calculate r we recall that in a regular MGEMIG/1 queue (20) holds, namely 
PL(z) = (1 - z)H(Dx,(Ao + zA) - zI)-l1x,(Ao + zAD). But PL1(1) = PL(1), since 
the ith component of this vector represents the probability that the ATC of the 
arrival process of class 1 is in stage i. Thus by taking the limits as z -- 1, we get (42). 

Remarks. 
1. Using (40) and (41) as well as the vector distributional law one can easily 

calculate the waiting time distributions, as in the case of the single MGEM/G/1 
queue. 

2. Note that once again for Poisson arrivals (40) takes the form 

GQ,(z) = (1 - z)[p2kX2(A, - A1i) + (1 - PI - p2)](X,(A1 - A1z) - z)-, 

which is exactly the result obtained in [13]. 

Low priority customers. The waiting time of the low priority customer equals in 
distribution the total unfinished work in the system at the moment of his arrival 
subject to generalized Erlang interruptions, corresponding to class 1 arrivals. As the 
work in the system as well as the distribution and duration of the interruptions do 
not depend on whether we give non-preemptive or preemptive resume priority to 
the class 1 customers we can conclude that the waiting time distribution for the low 
priority customer under a non-preemptive policy is the same as the waiting time 
under a preemptive resume policy (see [13]). However, this is not true for the 
waiting time in the system because of the notion of the effective service time that we 
used in the preemptive priority analysis. Nevertheless, we can calculate all the 
distributions of interest by using the distributional laws as well as the relation 
S2= W2+ X2. 

7. Concluding remarks 

We have demonstrated that overtake-free systems can be analyzed in a unified 
way through the distributional laws, which we believe deserve a more prominent 
place in queueing theory. More than providing a method of analysis for a class 
of systems, the paper identified a subdivision of queueing theory into overtake 
free systems, which can be analyzed using distributional laws, but are unfort- 
unately a small subset of the systems encountered in applications, which allow 
overtaking, and therefore are not analyzable directly through the techniques of this 
paper. 

In the case of overtake free systems, we showed several insights and new results 
that can be obtained. One which we consider particularly satisfying is the derivation 
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of heavy traffic results (usually derived using diffusion methods) and exact results 
can be achieved in a unified way using the asymptotic and exact method of analysis 
based on the distributional laws. 

The distributional laws being special cases of H = AG provide further evidence 
that the law H = AG provides the right set of laws at least for overtake free systems. 
The major open problem is to identify queueing laws for systems that allow 
overtaking, which lead to a complete solution. This is a challenging but important 
problem because it includes well known open problems as special cases (GI/G/s, 
queueing networks, etc.). A solution to this problem will lead, however, to a more 
complete theory of queues and is likely to provide very valuable new insights. 

Appendix A 

We present the proof of Proposition 1. We will use a generalization of the classical 
sub-busy period decomposition argument for the evaluation of the busy period for 
the M/G/1 queue (Takacs [24]). The duration of a busy period is invariant under 
the service discipline provided that the server is always busy if there are customers 
present. We may, therefore, use the last-come-first-serve (LCFS) service discipline. 
Let F,m be the random variable that represents the duration of the sub-busy period 
that ends with the A TC = m given that it started with the A TC = i. This definition is 
useful for the decomposition of the busy period into sub-busy periods. Let RaS be the 
ATC stage occupied by the customer just after the first customer of the sub-busy 
period is served. Let Ni(x) be the number of arrivals during x given that the A TC = i 
at the beginning. Then, conditionally on the event U = {Ra =j, X =x, Ni(x)= n}, 
we obtain the following decomposition, for n _ 1: 

E[e-sri Ra =j, X = x, N,(x) = n] = E[exp {-s(x + + r + *+ + ,m)}] 

= e-Sx[r(s)]'n. 

Unconditioning, we write the previous relation in matrix form: 

al\(x) *' a (x) 
rF()= e- sx *. : dFx(x) 

L 0 . aM(x) 

cc x/ al(x) 
+ e- sx *an 1)(x) * (a(x) .. a'(x))[F(s)]' dFx(x). 

n=l 
a 

() / \aM(X) 

To obtain a more concise form of the above equation we use the fact that, 
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for every pair of matrices Do of full rank and D1 of rank 1, (Do+ D)-1 = 

Do1 - Do D1D I /[1 + trace (Do 'D)]. Therefore, 

a (s)i;(s) 

(Is + Ao + zAA)- + = (Is + Ao)- + z 
I -zaas) M(s)i;(s)_ 

which expressed in real time gives 

a 1 (t) ... am(t) a a,(t) 

(45) e-(A+zA) . + z : *a (t)*(al(t) a(t)) 

"0 a (t)_ n=1 _aM(t)_ 

Using (45) we have that the busy period matrix F(s) satisfies the equation 
F(s) = f se-SXe-~s+A+Alr) dFx(x) = (x(s + Ao + A1r(s)). The above implicit equa- 
tion completely characterizes F(s). Notice that for M = l, this reduces to y(s)= 
kx(s + A - Ay(s)), which is the equation that the transform of the busy period 
satisfies in an M/G/1 queue. 

We now proceed in our analysis of the busy cycle C(s). A careful comparison of 
the definitions of C(s) and F(s) reveals that C,j(s)= ai(s)elF(s)e', or in words, the 

busy cycle that ends with the A TC = j given that it starts with the A TC = i, is equal 
to the remaining interarrival given that the ATC = i plus a busy period that ends 
with the A TC = j. 

In matrix notation 

al(t) 

C(s)= : e1(s). 

_-M(t) _ 

Using the fact that ai(s) = -ei(ls + Ao)-'A 1e and that A1e'e] = A1 we have that 

(46) C(s) = (Is + Ao)-'AF(s). 

Now, we are in a position to obtain H and H/. Let C be a matrix with elements 

cij=lim,oci,j(s), then we have that cij denotes the probability of a departing 
customer to leave the system empty and the ATC =j given that the previous 
departing customer that left the system empty left the A TC = i. Furthermore, Hi is 
the probability of a departing customer leaving the system empty and the A TC = i. 
Therefore, the following relation must be satisfied: 

(47) H+C = H+, 

i.e. H+ is a left eigenvector of C with eigenvalue 1. Notice that the above system of 
equations completely characterizes H+ up to a constant. On the other hand we know 
from (8) that H = AHj+Ao1, and also that H1' = (1 - p). The last system of equations 
together with (47) provides us with a complete description of both H+ and H. 
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Appendix B 

We consider single server priority queueing systems with mixed generalized 
Erlang arrivals, in which there are two distinct customer classes, numbered 1 and 2. 
Customers of class 1 have priority over those of class 2 and within the same class 
customers are served in a FIFO order. 

We first assume that customers of class 1 have preemptive priority over those of 
class 2. We will evaluate the vectors h and k such that hi . P{R2 = i, L1 = 0, L2 = 0} 
and kr P{Ra = r, L1 = 0, L = 0}. 

We first define a set of matrices F'.k(s) (for r, k = 1, 2, * , MI) with [rFk(s)],j to 
be the Laplace transform of a class 2 busy period that ended with A TCI = k and 
A TC2 = j given that it started with A TC1 = r and A TC2 = i. 

Using the same ideas as in Proposition 1 we obtain the set of matrices by solving 
the following M, x M1 system of nonlinear equations: 

bl(x) ... b2(x) 

Fr.k(s)= e-sx : . dFc.k(x) 

0 ... b2(x) 

x =1 bi(x) 
+ j e-s * b (- ) ( * (b-(x)* . b1f(x)) dFGr(x) E Ur,(s), 

bM(x) 

where U(s) = ,Ur, ...r, F,r2(s) x Fr2.r(s) X * * x Fr?k(S). 

We next define the matrix Trk(s) with [Trk(s)]ji, to be the Laplace transform of 
the duration of an interval that ends with a departure leaving the system empty, the 
ATC1 = k and ATC2 = j given that it started with a departure leaving the system 
empty A TC, = r and A TC2 = i. 

To obtain T'k(s) we follow the same line of arguments as in Proposition 1, and 
we obtain that 

- v kl k,.k - E[e-s~ with 1st arrival from class 2] = sx E ak'(x)elFk(s)e/b,(x) dx, 

E[e-s";' with 1st arrival from class 1] 

b((y) bM 2(y) 
= ar(x)e-"bi(x) e-s . : e dF, .) 

L o * \ * bM2(V) L 0 ... bM(v)- 

x x / bl(y)v) 

n=l bM(y)/ 

x Un(s)jee-s'dFrl,,(y). 
rl 
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Next, we define the M1 x M2 matrices E+ and E with elements 

[E+]r,j P{at a departure epoch L+ = 0, Rj = r, Rj = j}, 

[E],,j PL = O, R =r, R2=}. 

As in the proof of Proposition 1, from the definition of T'k(s) and E+ we obtain 
that 

E E+ lim [Trk(s)],, = Ek, for k = 1, * * , M1, i= 1, * , M2. 
r,j s-*O 

Furthermore, from the conservation of flow around the state (L = , R1 =r, 
R2 = j) we can obtain that E+ = A6E + EBo, so that knowing E+ we can evaluate 
the matrix E. 

Finally, 
M1 Ml 

(48) hj= E r,j, kj = A,rP,rEr,j. 
r=l r=l 

Now, in the case where class 1 customers have non-preemptive priority over the 
class 2 customers we need to evaluate the vector g with gr - P{L = 0, R1 = r}. Notice 
that the total number of customers in a priority system as well as the ATC are 

independent of the priority policy (given that it is work conserving). Therefore, to 
calculate g we can use the matrix E to obtain that 

M2 

(49) gr = Er,j. 
j=l 
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